Copper Chromium Zirconium Alloy Sputtering Target

Linear Formula:

Cu-Cr-Zr

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Copper Chromium Zirconium Alloy Sputtering Target
CU-CRZR-02-ST
Pricing > SDS > Data Sheet >
(3N) 99.9% Copper Chromium Zirconium Alloy Sputtering Target
CU-CRZR-03-ST
Pricing > SDS > Data Sheet >
(4N) 99.99% Copper Chromium Zirconium Alloy Sputtering Target
CU-CRZR-04-ST
Pricing > SDS > Data Sheet >
(5N) 99.999% Copper Chromium Zirconium Alloy Sputtering Target
CU-CRZR-05-ST
Pricing > SDS > Data Sheet >

Copper Chromium Zirconium Alloy Sputtering Target Properties (Theoretical)

Appearance solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Copper Chromium Zirconium Alloy Sputtering Target Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Copper Chromium Zirconium Alloy Sputtering Target

American Elements specializes in producing high purity Copper Chromium Zirconium Alloy Sputtering Targets with the highest possible density High Purity (99.99%) Copper Chromium Zirconium Alloy Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard sputtering targets for thin film deposition are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Rotary (cylindrical), round, rectangular, square, ring, annular, oval, "dog-bone" and other shaped targets are available in standard, custom, and research sized dimensions. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. Please request a quote above for more information on lead time and pricing.

Copper Chromium Zirconium Alloy Sputtering Target Synonyms

C1815, C18150, Chrome Copper Zirconium Alloy, copper-chromium-zirconium, CuCrZr

Chemical Identifiers

Linear Formula Cu-Cr-Zr
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Chromium

See more Chromium products. Chromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Louis Nicolas Vauquelin first discovered chromium in 1797 and first isolated it the following year. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metallic element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it transforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma.' meaning color.

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

TODAY'S TOP DISCOVERY!

December 20, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks