Fullerene C76

CAS #:

Linear Formula:

C76

MDL Number:

MFCD00283287

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Fullerene C76
C-FUL-01-P.C76
Pricing > SDS > Data Sheet >

Fullerene C76 Properties (Theoretical)

Compound Formula C76
Molecular Weight 912.81
Appearance Solid
Melting Point >350°C
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass 912
Monoisotopic Mass 912

Fullerene C76 Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Fullerene C76

Fullerene C76 is a molecule made up of 76 carbon atoms arranged in a series of interlocking hexagons and pentagons, forming a structure that looks similar to a rugby ball. C70 is actually a 37-sided polygon consisting of 12 pentagons and 25 hexagons. It was discovered in 1985 by Professor Sir Harry Kroto, and two Rice University professors, chemists Dr. Richard E. Smalley and Dr. Robert F. Curl Jr., [for which they were jointly awarded the 1996 Nobel Lauriate for chemistry] along with Fullerene C60, is the only molecule composed of a single element to form a hollow spheroids. C70 can be used as an n-channel organic semiconductor. Fullerenes are the third major form of pure carbon; graphite and diamond are the other two.

Fullerene C76 Synonyms

C-76

Chemical Identifiers

Linear Formula C76
MDL Number MFCD00283287
EC No. N/A
Pubchem CID 56846604
IUPAC Name N/A
SMILES C12=C3C4=C5C6=C1C7=C8C2=C9C1=C2C%10=C%11C(=C13)C1=C4C3=C4C%12=C%13C3=C5C3=C6C5=C7C6=C7C5=C5C3=C%13C3=C%13C%12=C%12C%14=C%15C%16=C%17C%18=C%19C%20=C%16C(=C%13%14)C(=C35)C7=C%20C3=C%19C5=C7C%18=C%13C%17=C%14C%15=C%15C%12=C4C1=C%11C%15=C%14C%10=C%13C2=C7C9=C
InchI Identifier InChI=1S/C76/c1-5-17-37-25-9(1)33-30-14-2-6-18-39-26-10(2)34-29(13(1)14)41-21(5)49-45(17)46-19-7-3-11-27-38(19)62(49)74-56(27)72-60-36(11)32-16-4-8-20-40-28-12(4)35-31(15(3)16)43-23(7)50(46)61(37)73-53(25)69-57(33)66-42(30)22(6)51(63(40)75(66)55(28)71(69)
InchI Key DEJYFPHYOINFQD-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

TODAY'S TOP DISCOVERY!

November 24, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions