Silver Bismuth Telluride Sputtering Target

Linear Formula:

AgBiTe2

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Silver Bismuth Telluride Sputtering Target
AG-BITE-01-ST
Pricing > SDS > Data Sheet >

Silver Bismuth Telluride Sputtering Target Properties (Theoretical)

Compound Formula AgBiTe2
Molecular Weight 572.05
Appearance Target
Melting Point N/A
Boiling Point N/A
Density 7.92 g/cm3
Solubility in H2O N/A
Crystal Phase / Structure Trigonal

About Silver Bismuth Telluride Sputtering Target

American Elements specializes in producing high purity Silver Bismuth Telluride Sputtering Targets with the highest possible density High Purity (99.99%) Silver Bismuth Telluride Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard sputtering targets for thin film deposition are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Rotary (cylindrical), round, rectangular, square, ring, annular, oval, "dog-bone" and other shaped targets are available in standard, custom, and research sized dimensions. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. Please request a quote above for more information on lead time and pricing.

Silver Bismuth Telluride Sputtering Target Synonyms

N/A

Chemical Identifiers

Linear Formula AgBiTe2
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

TODAY'S TOP DISCOVERY!

December 03, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks