White-Chen Catalyst

Fe(S,S-PDP)

CAS #:

Linear Formula:

[C24H32FeN6]2 (SbF6)2

MDL Number:

MFCD16038114

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2S,2′S-(−)-[N,N′-Bis(2-pyridylmethyl)]-2,2′-bipyrrolidinebis(acetonitrile)iron(II) Hexafluoroantimonate
FE-OMX-01-P
Pricing > SDS > Data Sheet >

White-Chen Catalyst Properties (Theoretical)

Compound Formula C24H32F12FeN6Sb2
Molecular Weight 931.908
Appearance Off-white to faint purple powder
Melting Point > 300 °C
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass 931.993 g/mol
Monoisotopic Mass 931.993 g/mol

White-Chen Catalyst Health & Safety Information

Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Precautionary Statements P261-P305 + P351 + P338
RTECS Number N/A
Transport Information NONH for all modes of transport
WGK Germany 3
MSDS / SDS

About White-Chen Catalyst

(2S,2′S-(−)-[N,N′-Bis(2-pyridylmethyl)]-2,2′-bipyrrolidinebis(acetonitrile)iron(II) Hexafluoroantimonate, known as White-Chen Catalyst, is one of numerous organometallic compounds manufactured by American Elements under the trade name AE Organometallics™. Organometallics are useful reagents, catalysts, and precursor materials with applications in thin film deposition, industrial chemistry, pharmaceuticals, LED manufacturing, and others. American Elements supplies organometallic compounds in most volumes including bulk quantities and also can produce materials to customer specifications. Please request a quote above for more information on pricing and lead time.

White-Chen Catalyst Synonyms

(2S,2'S)-(-)-[N,N'-Bis(2-pyridylmethyl]-2,2'-bipyrrolidinebis(acetonitrile)iron(II) hexafluoroantimonate, Fe(S,S-PDP), Iron(II) (S,S-(2-({(S)-2-[(S)-1-(pyridin-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-yl}methyl)pyridine)(bis-acetonitrile) hexafluoroantimonate, White Catalyst, [Fe(S,S-PDP), (CH3CN)2](SbF6)2, (2R,2′R-(+)-[N,N′-Bis(2-pyridylmethyl)]-2,2′-bipyrrolidinebis(acetonitrile)iron(II) hexafluoroantimonate

Chemical Identifiers

Linear Formula [C24H32FeN6]2 (SbF6)2
MDL Number MFCD16038114
EC No. N/A
Pubchem CID 44817506
IUPAC Name acetonitrile; hexafluoroantimony(1-); iron(2+);2-[[(2R)-2-[(2R)-1-(pyridin-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-yl]methyl]pyridine
SMILES CC#N.CC#N.C1CC(N(C1)CC2=CC=CC=N2)C3CCCN3CC4=CC=CC=N4.F[Sb-](F)(F)(F)(F)F.F[Sb-](F)(F)(F)(F)F.[Fe+2]
InchI Identifier InChI=1S/C20H26N4.2C2H3N.12FH.Fe.2Sb/c1-3-11-21-17(7-1)15-23-13-5-9-19(23)20-10-6-14-24(20)16-18-8-2-4-12-22-18;2*1-2-3;;;;;;;;;;;;;;;/h1-4,7-8,11-12,19-20H,5-6,9-10,13-16H2;2*1H3;12*1H;;;/q;;;;;;;;;;;;;;;+2;2*+5/p-12/t19-,20-;;;;;;;;;;;;;;;;;/m1.........
InchI Key XUNWHBGEOCZDBX-QSKJABRXSA-B

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Antimony

See more Antimony products. Antimony (atomic symbol: Sb, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance. Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials. It also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself.

Fluorine

Fluorine is a Block P, Group 17, Period 2 element. Its electron configuration is [He]2s22p5. The fluorine atom has a covalent radius of 64 pm and its Van der Waals radius is 135 pm. In its elemental form, CAS 7782-41-4, fluorine gas has a pale yellow appearance. Fluorine was discovered by André-Marie Ampère in 1810. It was first isolated by Henri Moissan in 1886.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

TODAY'S TOP DISCOVERY!

December 17, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks