Yttrium Aluminum Perovskite doped with Thulium

Tm:YAP

CAS #:

Linear Formula:

Tm:YAlO3

MDL Number:

N/A

EC No.:

234-443-8

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Yttrium Aluminum Perovskite doped with Thulium (Tm:YAP)
TM-YAP-02-C
Pricing > SDS > Data Sheet >
(3N) 99.9% Yttrium Aluminum Perovskite doped with Thulium (Tm:YAP)
TM-YAP-03-C
Pricing > SDS > Data Sheet >
(4N) 99.99% Yttrium Aluminum Perovskite doped with Thulium (Tm:YAP)
TM-YAP-04-C
Pricing > SDS > Data Sheet >
(5N) 99.999% Yttrium Aluminum Perovskite doped with Thulium (Tm:YAP)
TM-YAP-05-C
Pricing > SDS > Data Sheet >

Yttrium Aluminum Perovskite doped with Thulium Properties (Theoretical)

Compound Formula AlYO3
Molecular Weight 163.884
Appearance Translucent crystalline solid
Melting Point 1870 °C
Boiling Point N/A
Density 5.35 g/cm3
Solubility in H2O N/A
Refractive Index 1.94-1.97 (@ 632.8 nm)
Crystal Phase / Structure Orthorhombic
Specific Heat 0.557 J/g·K
Thermal Conductivity 11.7 W/m·K (a-axis), 10.0 W/m·K (b-axis), 13.3 W/m·K (c-axis)
Thermal Expansion 2.32 x 10-6 K-1 (a-axis), 8.08 x 10-6 K-1 (b-axis), 8.7 x 10-6 K-1 (c-axis)
Exact Mass 163.872 g/mol
Monoisotopic Mass 163.872 g/mol

Yttrium Aluminum Perovskite doped with Thulium Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Yttrium Aluminum Perovskite doped with Thulium

Yttrium Aluminum Perovskite doped with Thulium (Tm:YAP) is a crystalline solid used in photo optic applications. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting frelevant units of measurement.

Yttrium Aluminum Perovskite doped with Thulium Synonyms

YAP:Tm, Thulium doped YAlO3, thulium-doped yttrium orthoaluminate, Tm-doped YAP, YAlO3:Tm, yttrium aluminate, yttrium aluminum oxide, aluminum yttrium trioxide

Chemical Identifiers

Linear Formula Tm:YAlO3
MDL Number N/A
EC No. 234-443-8
Pubchem CID 165936
IUPAC Name aluminum; oxygen(2-); yttrium(3+)
SMILES [O-2].[O-2].[O-2].[Al+3].[Y+3]
InchI Identifier InChI=1S/Al.3O.Y/q+3;3*-2;+3
InchI Key JNDMLEXHDPKVFC-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Thulium

See more Thulium products. Thulium (atomic symbol: Tm, atomic number: 69) is a Block F, Group 3, Period 6 element with an atomic weight of 168.93421. Thulium Bohr ModelThe number of electrons in each of Thulium's shells is [2, 8, 18, 31, 8, 2] and its electron configuration is [Xe]4f136s2. The thulium atom has a radius of 176 pm and a Van der Waals radius of 227 pm.Elemental Thulium Picture In its elemental form, thulium has a silvery-gray appearance. Thulium is representative of the other lanthanides (rare earths) and similar in chemistry to yttrium. It is the least abundant of the rare earth elements. Thulium emits blue upon excitation, and is used in flat panel screens that depend critically on bright blue emitters. Thulium was discovered and first isolated by Per Teodor Cleve in 1879. It is named after "Thule," which is the ancient name of Scandinavia.

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Recent Research

TODAY'S TOP DISCOVERY!

November 19, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions