Yttrium Telluride

CAS #:

Linear Formula:

Y2Te3

MDL Number:

N/A

EC No.:

235-328-5

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(5N) 99.999% Yttrium Telluride Ingot
Y-TE-05-I
Pricing > SDS > Data Sheet >
(5N) 99.999% Yttrium Telluride Lump
Y-TE-05-L
Pricing > SDS > Data Sheet >
(5N) 99.999% Yttrium Telluride Powder
Y-TE-05-P
Pricing > SDS > Data Sheet >
(5N) 99.999% Yttrium Telluride Sputtering Target
Y-TE-05-ST
Pricing > SDS > Data Sheet >
(5N) 99.999% Yttrium Telluride Wafer
Y-TE-05-WF
Pricing > SDS > Data Sheet >

Yttrium Telluride Properties (Theoretical)

Compound Formula Te3Y2
Molecular Weight 560.61
Appearance solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass N/A
Monoisotopic Mass N/A
Charge N/A

Yttrium Telluride Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Yttrium Telluride

Telluride IonYttrium Telluride (Y2Te3) is a crystal grown product generally immediately available in most volumes. Technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Yttrium Telluride Synonyms

Diyttrium tritelluride

Chemical Identifiers

Linear Formula Y2Te3
MDL Number N/A
EC No. 235-328-5
Beilstein/Reaxys No. N/A
Pubchem CID N/A
IUPAC Name N/A
SMILES N/A
InchI Identifier N/A
InchI Key N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

TODAY'S TOP DISCOVERY!

November 21, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions