Skip to Page Content

Brass Electrodes

High Purity Cu Zn Electrodes


Product Product Code Request Quote
CU-90% ZN-10% BR-M-p.10ZN-EL Request Quote
CU-85% ZN-15% BR-M-p.15ZN-EL Request Quote
CU-80% ZN-20% BR-M-p.20ZN-EL Request Quote
CU-70% ZN-30% BR-M-p.30ZN-EL Request Quote
CU-65% ZN-35% BR-M-p.35ZN-EL Request Quote
CU-55% ZN-45% BR-M-p.45ZN-EL Request Quote

American Elements specializes in producing high purity uniform shaped Brass Electrodes with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). American Elements produces high purity Brass Electrodes which can be used in chemical and physics experiments related to mass and heat conductivity or for demonstration purposes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.

Zinc (Zn) atomic and molecular weight, atomic number and elemental symbolZinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746.Elemental Zinc In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C. It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin. For more information on zinc, including properties, safety data, research, and American Elements' catalog of zinc products, visit the Zinc element page.


CUSTOMERS FOR BRASS ELECTRODES HAVE ALSO LOOKED AT
Copper Oxide Copper Nitrate Copper Pellets Copper Acetylacetonate Copper Acetate
Copper Tin Silver Alloy Copper Metal Copper Oxide Pellets Copper Wire Copper Foil
Copper Chloride Copper Sputtering Target Copper Powder Copper Nanoparticles Aluminum Magnesium Copper Alloy
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Copper

  • Crystal structure of tetra-kis-(μ3-2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}phenolato)tetra-copper(II) ethanol monosolvate 2.5-hydrate.. Wang W, Ran J.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 22
  • Crystal structure of di-chlorido-bis-(methyl isonicotinate-κN)copper(II).. Ahadi E, Hosseini-Monfared H, Mayer P.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 18
  • Copper, lead and zinc removal from metal contaminated wastewater by adsorption onto agricultural wastes.. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PN.. Environ Technol. 2015 May 22:1-33.
  • Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL.. Phys Chem Chem Phys. 2015 May 22.
  • The relative importance of diet-related and waterborne effects of copper for a leaf-shredding invertebrate.. Zubrod JP, Englert D, Rosenfeldt RR, Wolfram J, Lüderwald S, Wallace D, Schnetzer N, Schulz R, Bundschuh M.. Environ Pollut. 2015 May 19
  • Low-current field-assisted assembly of copper nanoparticles for current collectors.. Liu L, Choi BG, Tung SO, Hu T, Liu Y, Li T, Zhao T, Kotov NA.. Faraday Discuss. 2015 May 21.
  • Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R).. Siddique YH, Haidari M, Khan W, Fatima A, Jyoti S, Khanam S, Naz F, Rahul, Ali F, Singh BR, Beg T, Mohibullah, Naqvi AH.. Toxicol Mech Methods. 2015 May 22:1-8.
  • Being two is better than one-catalytic reductions with dendrimer encapsulated copper- and copper-cobalt-subnanoparticles.. Ficker M, Petersen JF, Gschneidtner T, Rasmussen AL, Purdy T, Hansen JS, Hansen TH, Husted S, Moth Poulsen K, Olsson E, Christensen JB.. Chem Commun (Camb). 2015 May 22.
  • Sustainable Hydrogen Production by Ethanol Steam Reforming using a Partially Reduced Copper-Nickel Oxide Catalyst. Chen LC, Cheng H, Chiang CW, Lin SD. ChemSusChem. 2015 Apr 15.: ChemSusChem
  • Aerosol assisted CVD grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity resilient detection of H2S. Annanouch FE, Haddi Z, Vallejos S, Umek P, Guttmann P, Bittencourt C, Llobet E. ACS Appl Mater Interfaces. 2015 Mar 16.

Recent Research & Development for Zinc

  • Zinc Protoporphyrin Suppresses β-Catenin Protein Expression in Human Cancer Cells: The Potential Involvement of Lysosome-Mediated Degradation.. Wang S, Hannafon BN, Lind SE, Ding WQ.. PLoS One. 2015 May 22
  • Crystal structure of poly[bis-(μ-nicotinamide-κ(2) N (1):O)bis-(μ-4-nitro-benzoato-κ(2) O (1):O (1'))zinc].. Aşkın GŞ, Necefoğlu H, Tonbul AM, Dilek N, Hökelek T.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 11
  • Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL.. Phys Chem Chem Phys. 2015 May 22.
  • Stereoselective Polymerization of rac-Lactide Catalyzed by Zinc Complexes with Tetradentate Aminophenolate Ligands in Different Coordination Patterns: Kinetics and Mechanism.. Yang Y, Wang H, Ma H.. Inorg Chem. 2015 May 21.
  • Dinuclear versus mononuclear pathways in zinc mediated nucleophilic addition: a combined experimental and DFT study.. Qi X, Li Y, Zhang G, Li Y, Lei A, Liu C, Lan Y.. Dalton Trans. 2015 May 22.
  • Collective ion dynamics in liquid zinc: evidence for complex dynamics in a non-free-electron liquid metal.. Zanatta M, Sacchetti F, Guarini E, Orecchini A, Paciaroni A, Sani L, Petrillo C.. Phys Rev Lett. 2015 May 8
  • Csr1/Zap1 maintains zinc homeostasis and influences virulence in Candida dubliniensis, but is not coupled to morphogenesis.. Böttcher B, Palige K, Jacobsen ID, Hube B, Brunke S.. Eukaryot Cell. 2015 May 22.
  • Crystal structure of catena-poly[[[tetra-aqua-zinc(II)]-μ-1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] dinitrate monohydrate].. Hou C, Gan HM, Liu JC.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 25
  • Copper, lead and zinc removal from metal contaminated wastewater by adsorption onto agricultural wastes.. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PN.. Environ Technol. 2015 May 22:1-33.
  • The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Negahdary M, Chelongar R, Zadeh SK, Ajdary M. Adv Biomed Res. 2015 Mar 25: Adv Biomed Res
  • Characterizing the inhibitory action of zinc oxide nanoparticles on allergic-type mast cell activation. Feltis BN, Elbaz A, Wright PF, Mackay GA, Turney TW, Lopata AL. Mol Immunol. 2015 Mar 12