Tungsten Nickel Copper Alloy

Linear Formula:

W-Ni-Cu

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Tungsten Nickel Copper Alloy
Please specify desired composition and form when requesting pricing.
W-NICU-01
Pricing > SDS > Data Sheet >
W-90% Ni-6% Cu-4%
W-NICU-01-P.04CU
Pricing > SDS > Data Sheet >
W-92.5% Ni-4.5% Cu-3%
W-NICU-01-P.03CU
Pricing > SDS > Data Sheet >
W-95% Ni-3.5% Cu-1.5%
W-NICU-01-P.015CU
Pricing > SDS > Data Sheet >

Tungsten Nickel Copper Alloy Properties (Theoretical)

Compound Formula WNiCu
Appearance Metallic Solid
Melting Point N/A
Boiling Point N/A
Density 16.85-18.35 g/cm3
Solubility in H2O N/A
Electrical Resistivity 65-74 Ω-cmil/ft
Poisson's Ratio 0.29-0.32
Tensile Strength >e;648 MPa (Yield: >e;517 MPa)
Thermal Conductivity .23-.33 CGS Units
Vickers Hardness 250-330

Tungsten Nickel Copper Alloy Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information NONH for all modes of transport

About Tungsten Nickel Copper Alloy

Tungsten Nickel Copper is a high-density alloy suitable for high-temperature environments and applications such as simple balancing and radiation shielding. AE Alloys™ are available in numerous machined shapes such as bar, ingot, ribbon, wire, shot, sheet, and foil, in various dimensions. We can also produce materials to custom specifications by request. Ultra high purity and high purity forms also include metal powder, submicron powder and nanoscale, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us above for information on specifications, lead time and pricing.

Tungsten Nickel Copper Alloy Synonyms

Tungsten-nickel-copper, Inermet IT170 IT176 IT180, W90Ni6Cu4, Tungsten Heavy Alloy, WHA,, Tungsten High Density Alloy, W92.5Ni4.5Cu3, W95Ni3.5Cu1.5

Chemical Identifiers

Linear Formula W-Ni-Cu
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

TODAY'S TOP DISCOVERY!

December 19, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks